Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527856

RESUMO

APP gene dosage is strongly associated with Alzheimer's disease (AD) pathogenesis. Genomic duplication of the APP locus leads to autosomal dominant early-onset AD. Individuals with Down syndrome (trisomy of chromosome 21) harbor 3 copies of the APP gene and invariably develop progressive AD with highly characteristic neuropathological features. Restoring expression of APP to the equivalent of that of two gene copies, or lower, is a rational therapeutic strategy, as it would restore physiological levels of neuronal APP protein without the potentially deleterious consequences of inadvertently inducing loss of APP function. Here we find that antisense oligonucleotides (ASOs) targeting APP are an effective approach to reduce APP protein levels and rescue endolysosome and autophagy dysfunction in APP duplication human induced pluripotent stem cell (hiPSC)-derived cortical neurons. Importantly, using ultrasensitive single-aggregate imaging techniques, we show that APP targeting ASOs significantly reduce both intracellular and extracellular Aß-containing aggregates. Our results highlight the potential of APP ASOs as a therapeutic approach for forms of AD caused by duplication of the APP gene, including monogenic AD and AD related to Down syndrome.

2.
Angew Chem Int Ed Engl ; : e202317756, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523073

RESUMO

Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.

3.
Mol Psychiatry ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102482

RESUMO

Understanding the role of small, soluble aggregates of beta-amyloid (Aß) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aß) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aß aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.

4.
Cell Rep Methods ; 3(6): 100499, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426747

RESUMO

We developed the aggregate characterization toolkit (ACT), a fully automated computational suite based on existing and widely used core algorithms to measure the number, size, and permeabilizing activity of recombinant and human-derived aggregates imaged with diffraction-limited and super-resolution microscopy methods at high throughput. We have validated ACT on simulated ground-truth images of aggregates mimicking those from diffraction-limited and super-resolution microscopies and showcased its use in characterizing protein aggregates from Alzheimer's disease. ACT is developed for high-throughput batch processing of images collected from multiple samples and is available as an open-source code. Given its accuracy, speed, and accessibility, ACT is expected to be a fundamental tool in studying human and non-human amyloid intermediates, developing early disease stage diagnostics, and screening for antibodies that bind toxic and heterogeneous human amyloid aggregates.


Assuntos
Doença de Alzheimer , Agregados Proteicos , Humanos , Doença de Alzheimer/diagnóstico , Amiloide , Proteínas Amiloidogênicas , Algoritmos
5.
Behav Brain Res ; 452: 114590, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37499910

RESUMO

Synaptic dysfunction underlies many neurodevelopmental disorders (NDDs). The membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) regulate synaptic development by modulating neurexin-neuroligin complex formation. Since understanding the neurodevelopmental profile and the sex-based differences in the manifestation of the symptoms of NDDs is important for their early diagnosis, we tested a mouse model haploinsufficient for MDGA2 (MDGA2+/-) on a neurodevelopmental test battery, containing sensory, motor, and cognitive measures, as well as ultrasonic vocalizations. When male and female MDGA2+/- and wildtype (WT) C57BL/6 J mice were examined from 2 to 23 days of age using this test battery, genotype and sex differences in body weight, sensory-motor processes, and ultrasonic vocalizations were observed. The auditory startle reflex appeared earlier in the MDGA2+/- than in WT mice and the MDGA2+/- mice produced fewer ultrasonic vocalizations. The MDGA2+/- mice showed reduced locomotion and rearing than WT mice in the open field after 17 days of age and spent less time investigating a novel object than WT mice at 21 days of age. Female MDGA2+/- mice weighed less than WT females and showed lower grip strength, indicating a delay in sensory-motor development in MDGA2+/- mice, which appears to be more pronounced in females than males. The behavioural phenotypes resulting from MDGA2 haploinsufficiency suggests that it shows delayed development of motor behaviour, grip strength and exploratory behaviour, non-social phenotypes of NDDs.


Assuntos
Transtornos do Neurodesenvolvimento , Camundongos , Feminino , Masculino , Animais , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas de Membrana , Reflexo de Sobressalto , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas Ligadas por GPI/metabolismo
6.
Sci Rep ; 13(1): 2043, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739453

RESUMO

Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aß42) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males. However, elevated Aß42 levels are associated with Aß42 binding to Igf2 DMR2, increased DNA and histone methylation, and a reduction in Igf2 expression and IGF2 levels in 5xFAD mice and AD patients, independent of H19 ICR methylation. Cell culture results confirmed the binding of Aß42 to Igf2 DMR2 increased DNA and histone methylation, and reduced Igf2 expression. These results indicate an age- and sex-related causal relationship among Aß42 levels, epigenomic state, and Igf2 expression in AD and provide a potential mechanism for Igf2 regulation in normal and pathological conditions, suggesting IGF2 levels may be a useful diagnostic biomarker for Aß42 targeted AD therapies.


Assuntos
Doença de Alzheimer , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Metilação de DNA , Epigênese Genética , Impressão Genômica , Células HEK293 , Histonas/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos Endogâmicos ICR , RNA Longo não Codificante/genética
7.
Genes Brain Behav ; 21(8): e12813, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35733405

RESUMO

Alzheimer's disease is the most frequent form of dementia in elderly people. The triple transgenic (3xTg-AD) mouse model of Alzheimer's Disease is important in biomedical research as these mice develop both neuropathological and behavioural phenotypes. However, their behavioural phenotype is variable, with findings depending on the specific task, as well as the age and sex of the mice. Whisker movements show motor, sensory and cognitive deficits in mouse models of neurodegenerative disease. Therefore, we examined whisker movements in 3, 12.5 and 17-month-old female 3xTg-AD mice and their B6129S/F2 wildtype controls. Mice were filmed using a high-speed video camera (500 fps) in an open arena during a novel object exploration task. Genotype and age differences were found in mice exploring the arena prior to object contact. Prior to whisker contact, the 3-month-old 3xTg-AD mice had smaller whisker angles compared with the wildtype controls, suggesting an early motor phenotype in these mice. Pre-contact mean angular position at 3 months and whisking amplitude at 17 months of age differed between the 3xTg-AD and wildtype mice. During object contact 3xTg-AD mice did not reduce whisker spread as frequently as the wildtype mice at 12.5 and 17 months, which may suggest sensory or attentional deficits. We show that whisker movements are a powerful behavioural measurement tool for capturing behavioural deficits in mouse models that show complex phenotypes, such as the 3xTg-AD mouse model.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Feminino , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Camundongos Transgênicos , Vibrissas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
J Alzheimers Dis ; 88(1): 37-44, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599484

RESUMO

Although Alzheimer's disease is most often studied in terms of memory impairments, olfactory dysfunction begins in the early stages. We tested olfactory learning, sensitivity, and response bias using signal detection methods in 12-month-old male and female 5xFAD mice and their wildtype controls in the operant olfactometer. Odor detection was not reduced in the 5xFAD mice, but learning was, which was worse in female 5xFAD mice than in males. Female mice were more conservative in their response strategy. Signal detection analysis allows us to discriminate between cognitive and sensory deficits of male and female mouse models of AD.


Assuntos
Doença de Alzheimer , Detecção de Sinal Psicológico , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Olfato
9.
Behav Brain Res ; 424: 113806, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35183618

RESUMO

The 5xFAD mouse model of Alzheimer's disease (AD) develops age-related neuropathology and sensory, motor, and cognitive impairments. The purpose of this study was to examine whether age-related changes in motor function affected working memory performance in 5xFAD mice in the Hebb-Williams Maze (HWM). At 6 months of age, the 5xFAD mice performed better than the WT (B6SJL) mice on the accelerating rotarod, but much worse at 12 months of age. The 5xFAD and WT mice did not differ in days to acquisition in the HWM at 6 months of age, but the WT mice took longer at 12 months of age. The number of errors increased with maze difficulty and at 6 months of age, the 5xFAD mice made more errors than the WT mice only on difficult problems. At 12 months of age 5xFAD mice made more errors than WT mice at each level of problem difficulty. The latency to solve the problems was higher for the 5xFAD mice than the WT mice in the difficult problems at 6 months of age and in the intermediate problems at 12 months of age. Although body weight had some effect on rotarod performance, there were no systematic effects of motor deficits on either errors or latency measures in the test trials of the HWM. These results indicate that the 5xFAD mice had deficits in working memory in the HWM and that these deficits were not confounded by impaired motor performance.


Assuntos
Doença de Alzheimer , Memória de Curto Prazo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
10.
Behav Brain Res ; 406: 113214, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33677013

RESUMO

In addition to cognitive decline, patients with Alzheimer's disease (AD) exhibit sensory, motor, and neuropsychiatric deficits. Many AD patients also show weight loss, suggesting that AD may involve a metabolic syndrome. The 5xFAD mouse model shows age-related weight loss compared to wildtype controls, and thus may exhibit metabolic dysfunction. This longitudinal study measured age-related weight loss in female 5xFAD and B6SJL/JF2 wild-type mice from 3 to 12 months of age, and examines some of the behavioural and physiological phenotypes in these mice that have been proposed to contribute to this weight loss. Because some mice had to be singly housed during the study, we also examined genotype by housing interactions. The 5xFAD mice weighed less and ate less than WT littermates starting at 6 months of age, exhibited less home cage activity, had higher frailty scores, less white adipose tissue, and lower leptin expression. At 9 and 12 months of age, heavier 5xFAD mice performed better on the rotarod, suggesting that metabolic deficits which begin between 6 and 9 months of age may exacerbate the behavioural deficits in 5xFAD mice. These results indicate that the 5xFAD mouse is a useful model to study the behavioural and metabolic changes in AD.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Comportamento Animal/fisiologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Redução de Peso
11.
Genes Brain Behav ; 20(3): e12696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32808443

RESUMO

The membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2+/- ) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2+/- and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety. Mice with the MDGA2+/- genotype differed from WT mice in motor, social and repetitive behavior and anxiety, but most of these effects involved interactions between MDGA2+/- genotype and background strain. The background strain also influenced MDGA2 levels and NLGN2 association in MDGA2+/- mice. Our findings emphasize the importance of the background strain used in studies of genetically modified mice.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas Ligadas por GPI/genética , Patrimônio Genético , Moléculas de Adesão de Célula Nervosa/genética , Fenótipo , Animais , Feminino , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Comportamento Social
12.
Genes Brain Behav ; 19(3): e12532, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353643

RESUMO

Active whisking in mice and rats is one of the fastest behaviours known in mammals and is used to guide complex behaviours such as exploration and navigation. During object contact, whisker movements are actively controlled and undergo robust changes in timing, speed and position. This study quantifies whisker movements in 6- to 7-month old male and female 5xFAD mice, and their C57/SJL F1 wild-type (WT) controls. As well as genotype, we examined sex differences and the effects of retinal degeneration (rd). Mice were filmed using a high-speed video camera at 500 frames per second (fps), under infrared light while behaving freely in three tasks: object exploration, sequential object exploration and tunnel running. Measures of whisker position, amplitude, speed and asymmetry were extracted and analysed for each task. The 5xFAD mice had significantly altered whisker angular positions, amplitude and asymmetry during object contacts and female 5xFAD mice with rd had lower mean angular positions during object contact. There were no significant effects of genotype on sequential object exploration or on tunnel running but differences due to sex and rd were found in both tasks, with female mice making larger and faster whisker movements overall, and mice with rd making larger and faster whisker movements during object contact. There were sex differences in whisker movements during sequential object exploration and females with rd had higher whisker retraction speeds in tunnel running. These data show that measuring whisker movements can quantify genotype and sex differences and the effects of rd during exploratory behaviour in these mice.


Assuntos
Doença de Alzheimer/fisiopatologia , Comportamento Exploratório , Degeneração Retiniana/fisiopatologia , Vibrissas/fisiologia , Doença de Alzheimer/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
13.
J Neurosci Methods ; 331: 108532, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785300

RESUMO

BACKGROUND: Previous studies have measured whisker movements and locomotion to characterise mouse models of neurodegenerative disease. However, these studies have always been completed in isolation, and do not involve standardized procedures for comparisons across multiple mouse models and background strains. NEW METHOD: We present a standard method for conducting whisker movement and locomotion studies, by carrying out qualitative scoring and quantitative measurement of whisker movements from high-speed video footage of mouse models of Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, Alzheimer's disease, Cerebellar Ataxia, Somatosensory Cortex Development and Ischemic stroke. RESULTS: Sex, background strain, source breeder and genotype all affected whisker movements. All mouse models, apart from Parkinson's disease, revealed differences in whisker movements during locomotion. R6/2 CAG250 Huntington's disease mice had the strongest behavioural phenotype. Robo3R3-5-CKO and RIM-DKOSert mouse models have abnormal somatosensory cortex development and revealed significant changes in whisker movements during object exploration. COMPARISON WITH EXISTING METHOD(S): Our results have good agreement with past studies, which indicates the robustness and reliability of measuring whisking. We recommend that differences in whisker movements of mice with motor deficits can be captured in open field arenas, but that mice with impairments to sensory or cognitive functioning should also be filmed investigating objects. Scoring clips qualitatively before tracking will help to structure later analyses. CONCLUSIONS: Studying whisker movements provides a quantitative measure of sensing, motor control and exploration. However, the effect of background strain, sex and age on whisker movements needs to be better understood.


Assuntos
Doenças Neurodegenerativas , Vibrissas , Animais , Cognição , Locomoção , Camundongos , Reprodutibilidade dos Testes , Córtex Somatossensorial
14.
Front Pharmacol ; 10: 1044, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607909

RESUMO

The kynurenine pathway metabolizes tryptophan into nicotinamide adenine dinucleotide, producing a number of intermediary metabolites, including 3-hydroxy kynurenine and quinolinic acid, which are involved in the neurodegenerative mechanisms that underlie Alzheimer's disease (AD). Indolamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of this pathway, is increased in AD, and it has been hypothesized that blocking this enzyme may slow the progression of AD. In this study, we treated male and female 3xTg-AD and wild-type mice with the novel IDO inhibitor DWG-1036 (80 mg/kg) or vehicle (distilled water) from 2 to 6 months of age and then tested them in a battery of behavioral tests that measured spatial learning and memory (Barnes maze), working memory (trace fear conditioning), motor coordination and learning (rotarod), anxiety (elevated plus maze), and depression (tail suspension test). The 3xTg-AD mice treated with DWG-1036 showed better memory in the trace fear conditioning task and significant improvements in learning but poorer spatial memory in the Barnes maze. DWG-1036 treatment also ameliorated the behaviors associated with increased anxiety in the elevated plus maze and depression-like behaviors in the tail suspension test in 3xTg-AD mice. However, the effects of DWG-1036 treatment on the behavioral tasks were variable, and sex differences were apparent. In addition, high doses of DWG-1036 resulted in reduced body weight, particularly in females. Taken together, our results suggest that the kynurenine pathway is a promising target for treating AD, but more work is needed to determine the effective compounds, examine sex differences, and understand the side effects of the compounds.

15.
Behav Brain Res ; 370: 111937, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31121220

RESUMO

The 3xTg-AD mouse model of Alzheimer's disease (AD) has both amyloid beta plaque and tau tangle pathology. However, the results of behavioural testing with these mice have been inconsistent due to age- and sex-related differences, as well as differences in the difficulty of the tests used to measure cognitive function. In order to better understand the sex- and age-related spatial working memory deficits in the 3xTg-AD mice compared to their B6129S/F2 wildtype controls, we tested 4 and 7-month-old males and females and 13-month-old females in the Hebb-Williams maze. In the acquisition phase, the 3xTg-AD mice performed better than the WT controls, but the females of both genotypes showed motivational deficits; often returning to the start box and not eating the food reward, thus taking longer than males to meet the criterion for acquisition. The 3xTg-AD mice showed more working memory deficits than WT mice during the test phase, and the difference increased as the problems increased in difficulty. The results of this study indicate that female 3xTg-AD mice may have motivational deficits in tests using food reward and that the cognitive deficits of the 3xTg-AD mice are not apparent when the tests are too easy; the more difficult the task, the more deficits are shown in the 3xTg-AD mice compared to WT controls. Thus, the inconsistency in previous results may result from differences in motivation and in test difficulty and these must be considered when evaluating cognitive deficits in the 3xTg-AD mice.


Assuntos
Motivação/fisiologia , Memória Espacial/fisiologia , Fatores Etários , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Masculino , Transtornos da Memória/patologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia , Presenilina-1/genética , Caracteres Sexuais , Fatores Sexuais , Proteínas tau/metabolismo
16.
Am J Pathol ; 189(7): 1435-1450, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30980800

RESUMO

Pathologic inflammation in response to injury, infection, or oxidative stress is a proposed mechanism relating cognitive decline to dementia. The kynurenine pathway and thioredoxin-interacting protein (TXNIP) activity regulate inflammation and neurotoxicity in Alzheimer disease (AD). We examined cognitive deficits, kynurenine pathway mediators, TXNIP, and oxidative damage in the cerebrum and spleen, including inflammatory cytokine production by stimulated splenocytes, from female triple transgenic (3xTg-AD) mice in early and late stages of disease progression, and characterized tissue-specific epigenetic regulation of Txnip gene expression. We show that cognitive deficits in 7-month-old 3xTg-AD mice are associated with a stable increase in cerebrum and spleen tryptophan metabolites, with a concomitant increase in amyloid ß 40 (Aß40)/Aß42 and tau/hyperphosphorylated tau pathologies and a coordinated reduction in spleen proinflammatory cytokine production in 17-month-old mice. The enhanced cerebrum TXNIP expression is associated with increased histone acetylation, transcription factor [Aß42 or CCCTC-binding factor (CTCF)] binding, and Txnip promoter hypomethylation, whereas the attenuated spleen TXNIP expression is associated with increased histone methylation, reduced CTCF binding, and Txnip promoter hypermethylation. These results suggest a causal relationship among epigenomic state, TXNIP expression, cerebral-spleen tryptophan metabolism, inflammatory cytokine production, and cognitive decline; and they provide a potential mechanism for Txnip gene regulation in normal and pathologic conditions, suggesting TXNIP levels may be a useful predictive or diagnostic biomarker for Aß40/Aß42 targeted AD therapies.


Assuntos
Doença de Alzheimer , Cérebro , Disfunção Cognitiva , Estresse Oxidativo , Baço , Triptofano , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cérebro/metabolismo , Cérebro/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Baço/metabolismo , Baço/patologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Triptofano/genética , Triptofano/metabolismo
17.
J Neurosci Res ; 97(7): 817-827, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30973189

RESUMO

Temporal information processing in the seconds-to-minutes range is disrupted in patients with Alzheimer's disease (AD). In this study, we investigated the timing behavior of the 5xFAD mouse model of AD in the peak interval (PI) procedure. Nine-month-old female mice were trained with sucrose solution reinforcement for their first response after a fixed-interval (FI) and tested in the inter-mixed non-reinforced PI trials that lasted longer than FI. Timing performance indices were estimated from steady-state timed anticipatory nose-poking responses in the PI trials. We found that the time of maximal reward expectancy (peak time) of the 5xFAD mice was significantly earlier than that of the wild-type (WT) controls with no differences in other indices of timing performance. These behavioral differences corroborate the findings of previous studies on the disruption of temporal associative memory abilities of 5xFAD mice and can be accounted for by the scalar timing theory based on altered long-term memory consolidation of temporal information in the 5xFAD mice. This is the first study to directly show an interval timing phenotype in a genetic mouse model of AD.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Aprendizagem , Memória , Animais , Feminino , Camundongos , Camundongos Transgênicos , Reforço Psicológico
18.
Behav Brain Res ; 360: 235-243, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30508608

RESUMO

We investigated interval timing behavior of 10-month-old male and female 3xTg-AD mice compared with their B6129F2/J wild type controls using the peak interval procedure with a 15 s target interval. Multiple parameters reflecting different aspects of timing performance were extracted from steady-state anticipatory nose-poking behavior using two different approaches: single trial analyses and average response curve analyses. These measures can dissociate the differences in performance due to distortions in the interval timing ability or to motivational decline (i.e. apathy); both of which have been reported in Alzheimer patients. We found that the interval timing ability of male and female 3xTg-AD mice did not differ from wild-type controls. However, in measures reflecting motivational state, we found significant sex differences regardless of genotype. Specifically, female mice initiated anticipatory responding later in the trial and had lower response amplitudes than males. Although our findings can also be interpreted in terms of differences in temporal control for response initiation, they more strongly suggest the effect of differential incentive motivation between sexes on timing behavior in these mice.


Assuntos
Doença de Alzheimer/complicações , Condicionamento Operante/fisiologia , Transtornos da Percepção/etiologia , Caracteres Sexuais , Percepção do Tempo/fisiologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Reforço Psicológico , Privação de Água , Proteínas tau/genética
19.
Behav Brain Res ; 356: 305-313, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30208295

RESUMO

Motor deficits are some of the most prevalent non-cognitive symptoms of Alzheimer's disease (AD) with patients showing impairments in speech, gait and fine motor skills. We investigated motor behaviour in 16-month-old male and female 3xTg-AD mice and their B6129SF2 wildtype (WT) controls. The 3xTg-AD mice develop extracellular Aß plaques and tau tangles in the hippocampus and motor cortex between 6 and 9 months of age. Previously we showed that at 6 months of age, 3xTg-AD mice performed better on tests of motor coordination and motor learning than WT mice. The aim of our experiment was to use a battery of motor behaviour tests to determine if this superior motor performance was present in older mice. On the Rotarod, the aged 3xTg-AD mice showed better motor coordination and learning than WT mice. Although females performed better than males, this sex difference was confounded by body weight as females weighed less than males. There were no significant genotype or sex differences on the wire hang or grid suspension tasks, nor in stride length or stride width, but 3xTg-AD mice performed worse than WT mice on the balance beam. In comparison to the 6-month-old mice, an age-related decline in most aspects of motor behaviour was apparent. These results indicate that different sub-domains of motor function are affected differently in the 3xTg-AD mice and that aging does not have the same effect on all motor behaviours.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Atividade Motora/fisiologia , Placa Amiloide/genética , Fatores Etários , Doença de Alzheimer/genética , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Marcha/fisiologia , Masculino , Camundongos Transgênicos , Placa Amiloide/metabolismo , Caracteres Sexuais
20.
Front Aging Neurosci ; 10: 172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946252

RESUMO

Mouse models of Alzheimer's disease (AD) exhibit marked differences in life expectancy depending on their genotype and sex. The assessment of frailty could provide a measure of healthspan to facilitate comparisons between different AD models. We used a validated mouse frailty index (FI) assessment tool to explore genotype and sex differences in lifespan and healthspan of 3xTg-AD mice and their B6129F2 wild-type (WT) controls. This tool is based on an approach commonly used in people and quantifies frailty by counting the accumulation of age-related health deficits. The number of deficits in an individual divided by the total number measured yields an FI score theoretically between 0 and 1, with higher scores denoting more frailty. Male 3xTg-AD mice aged 300-600 days had higher FI scores (Mean FI = 0.21 ± 0.03) than either male WT (Mean FI = 0.15 ± 0.01) or female 3xTg-AD mice (Mean FI = 0.10 ± 0.01), and the elevated frailty scores were accompanied by parallel increases in mortality. Frailty increased exponentially with age, and higher rates of deficit accumulation elevated mortality risk in all groups of mice. When mice were stratified by FI score, frailty predicted mortality, at least in females. Therefore, the mouse clinical FI provides a valuable tool for evaluating healthspan in mouse models of AD with different lifespans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...